Quimica 1
  Funciones Orgánicas II
 

Equipo #9

Jessica E. Chanes Reynoso
Rubi de la Cruz Navarrete
Liliana Valencia Ramos



Funciones Orgánicas II

Halógenos

Los halógenos (formador de sales) son los elementos no metales, excepto por el Astato, que es anfótero, del grupo 17 de la tabla periódica.

En estado natural se encuentran como
moléculas diatómicas , X2. Para llenar por completo su último nivel energético necesitan un electrón más, por lo que tienen tendencia a formar un
ion mononegativo, X-
Su formula general es R - X

Poseen una
electronegatividad ≥ 2,5 según la escala de Pauling, presentando el flúor la mayor electronegatividad, y disminuyendo ésta al bajar en el grupo. Son elementos oxidantes (disminuyendo esta característica al bajar en el grupo), y el flúor es capaz de llevar a la mayor parte de los elementos al mayor estado de oxidación que presentan.

Muchos compuestos orgánicos sintéticos, y algunos naturales, contienen halógenos; a estos compuestos se les llama compuestos halogenados. La hormona tiroidea contiene átomos de yodo. Los cloruros tienen un papel importante en el funcionamiento del cerebro mediante la acción del neurotransmisor inhibidor de la transmisión GABA.

Propiedades y compuestos

La reactividad o capacidad de combinación con otros elementos es tan grande en los halógenos que rara vez aparecen libres en la naturaleza. Se encuentran principalmente en forma de sales disueltas en el agua de mar o en extensos depósitos salinos originados en épocas geológicas antiguas por evaporación de mares interiores. El último elemento del grupo, el astato, nombre que significa inestable, se obtiene al bombardear bismuto con partículas alfa (núcleos de helio), por lo que constituye un producto asociado a las distintas series radiactivas.

El estado físico de los halógenos en condiciones ambientales normales oscila entre el gaseoso del flúor y el cloro y el sólido del yodo y el astato; el bromo, por su parte, es líquido a temperatura ambiente.

Otras propiedades físicas, como los puntos de fusión y de ebullición, la densidad y el radio medio del átomo, varían en orden creciente del flúor al yodo. El calor específico -definido como cantidad de calor que ha de absorber 1 g de sustancia para aumentar 1 °C su temperatura- disminuye en la misma relación.

La característica química fundamental de los halógenos es su capacidad oxidante, por la que arrebatan electrones o unidades elementales de carga a otros elementos y moléculas de signo eléctrico negativo para formar iones también negativos denominados aniones haluro. La energía de oxidación de los halógenos es máxima en el flúor y se debilita hasta el yodo. El astato, por su naturaleza radiactiva, forma escasos e inestables compuestos. Los iones haluro, relativamente grandes e incoloros, poseen una alta estabilidad, en especial en el caso de los fluoruros y cloruros.

Aplicaciones en general más importantes de los halógenos 

 Los derivados del flúor tienen una notable importancia en el ámbito de la industria. Entre ellos destacan los hidrocarburos fluorados, como el anticongelante freón y la resina teflón, lubricante de notables propiedades mecánicas. Los fluoruros son útiles como insecticidas. Además, pequeñísimas cantidades de flúor añadidas al agua potable previenen la caries dental, razón por la que además suele incluirse en la composición de los dentífricos.

El cloro encuentra su principal aplicación como agente de blanqueo en las industrias papelera y textil. Así mismo, se emplea en la esterilización del agua potable y de las piscinas, y en las industrias de colorantes, medicamentos y desinfectantes.

Los bromuros actúan médicamente como sedantes, y el bromuro de plata se utiliza como un elemento fundamental en las placas fotográficas. El yodo, cuya presencia en el organismo humano resulta esencial y cuyo defecto produce bocio, se emplea como antiséptico en caso de heridas y quemaduras.





Alcoholes

En química se denomina a aquellos hidrocarburos saturados, o alcanos que contienen un grupo hidroxilo (-OH) en sustitución de un átomo de hidrógeno enlazado de forma covalente.

Los alcoholes pueden ser primarios, secundarios o terciarios, en función del número de átomos de hidrógeno sustituidos en el átomo de carbono al que se encuentran enlazado el grupo hidroxilo.

Propiedades generales

Los alcoholes son líquidos incoloros de baja masa molecular y de olor característico, solubles en el agua en proporción variable y menos densos que ella. Al aumentar la masa molecular, aumentan sus puntos de fusión y ebullición, pudiendo ser sólidos a temperatura ambiente (p.e. el pentaerititrol funde a 260 ºC). También disminuye la solubilidad en agua al aumentar el tamaño de la molécula, aunque esto depende de otros factores como la forma de la cadena alquílica. Algunos alcoholes (principalmente polihidroxílicos y con anillos aromáticos) tienen una densidad mayor que la del agua. Sus puntos de fusión y ebullición suelen estar muy separados, por lo que se emplean frecuentemente como componentes de mezclas anticongelantes. Por ejemplo, el 1,2-etanodiol tiene un p.f. de -16 ºC y un p.eb. de 197 ºC.

Propiedades químicas de los alcoholes:

Las propiedades químicas de los alcoholes están relacionados con el grupo -OH, que es muy polar y capaz de establecer puentes de hidrógeno con sus moléculas compañeras, con otras moléculas neutras, y con aniones.

Alcoholes primarios, secundarios y terciarios

  1. Alcohol primario: los alcoholes primarios reaccionan muy lentamente. Como no pueden formar carbocationes, el alcohol primario activado permanece en solución hasta que es atacado por el ión cloruro. Con un alcohol primario, la reacción puede tomar desde treinta minutos hasta varios días.

  2. Alcohol secundario: los alcoholes secundarios tardan menos tiempo, entre 5 y 20 minutos, porque los carbocationes secundarios son menos estables que los terciarios.

  3. Alcohol terciario: los alcoholes terciarios reaccionan casi instantáneamente, porque forman carbocationes terciarios relativamente estables.

 Aplicaciones

Los alcoholes tienen una gran gama de usos en la industria y en la ciencia como solventes y combustibles. El etanol y el metanol pueden hacerse combustionar de una manera más limpia que la gasolina o el gasoil. Por su baja toxicidad y disponibilidad para disolver sustancias no polares, el etanol es utilizado frecuentemente como solvente en fármacos, perfumes y en esencias vitales como la vainilla. Los alcoholes sirven frecuentemente como versátiles intermediarios en la síntesis orgánica.

Nomenclatura

• Común (no sistemática): anteponiendo la palabra alcohol y sustituyendo el sufijo -ano del correspondiente alcano por -ílico. Así por ejemplo tendríamos alcohol metílico, alcohol etílico, alcohol propílico, etc.

• IUPAC: sustituyendo el sufijo -ano por -ol en el nombre del alcano progenitor, e identificando la posición del átomo del carbono al que se encuentra enlazado el grupo hidroxilo.

• Cuando el grupo alcohol es sustituyente, se emplea el prefijo hidroxi- Se utilizan los sufijos -diol, -triol... según la cantidad de grupos OH que se encuentre 






Aldehidos
 

Los aldehídos son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminacion -ol por -al :


Propiedades físicas

La doble unión del grupo carbonilo son en parte covalentes y en parte iónicas dado que el grupo carbonilo está polarizado debido al fenómeno de resonancia.

Los aldehídos con hidrógeno sobre un carbono sp³ en posición alfa al grupo carbonilo presentan isomería tautomérica.Los aldehídos se obtienen de la deshidratación de un alcohol primario, se deshidratan con permanganato de potasio la reacción tiene que ser débil , las cetonas también se obtienen de la dehidratación de un alcohol , pero estas se obtienen de un alcohol secundario e igualmente son deshidratados como permanganato de potasio y se obtienen con una reacción débil , si la reacción del alcohol es fuerte el resultado será un ácido carboxílico. 

Propiedades químicas

Se comportan como reductor, por oxidación el aldehído da ácidos con igual número de átomos de carbono. 
La reacción típica de los aldehídos y las cetonas es la adición nucleofílica.

Aplicaciones

Los usos principales de los aldehídos son:

La fabricación de resinas 
Plásticos 
Solventes 
Pinturas 
Perfumes 
Esencias

- Los aldehídos están presentes en numerosos productos naturales y grandes variedades de ellos son de la propia vida cotidiana. La glucosa por ejemplo existe en una forma abierta que presenta un grupo aldehído. El acetaldehído formado como intermedio en la metabolización se cree responsable en gran medida de los síntomas de la resaca tras la ingesta de bebidas alcohólicas.

- El formaldehído es un conservante que se encuentra en algunas composiciones de productos cosméticos. Sin embargo esta aplicación debe ser vista con cautela ya que en experimentos con animales el compuesto ha demostrado un poder cancerígeno. También se utiliza en la fabricación de numerosos compuestos químicos como la baquelita, la melamina etc.

 Nomenclatura

 Se nombran sustituyendo la terminación -o del nombre del hidrocarburo por -al. Los aldehídos más simples (metanal y etanal) tienen otros nombres que no siguen el estándar de la IUPAC pero son más utilizados (formaldehído y acetaldehído, respectivamente) estos últimos dos son nombrados en nomenclatura trivial.

 

 

 

 
  Hoy habia 8 visitantes (9 clics a subpáginas) ¡Aqui en esta página!  
TEXTO AL PONER EL CURSOR SOBRE TU LOGO Buscar en la Web Buscar en Google
 


MySpace Generator
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis