Quimica 1
  Funciones Organicas
 

                       QUIMICA     
                   EQUIPO 5

Martin Armando Esparza Alvares
Christian Abel de la Torre Vázquez
Jorge Alejandro Lara Elviro
 
Luis Alberto Lomeli Vázquez 
Gonzalo Gonzalez Ramos
   


             FUNCIONES ORGANICAS

                                ETER

Son compuestos que resultan de la unión de dos radicales alquílicos o aromáticos a través de un puente de oxígeno -O-. Son compuestos que tienen un átomo de oxígeno unido a dos radicales hidrocarbonados

Se nombran interponiendo la partícula "-oxi-" entre los dos radicales, o más comunmente, nombrando los dos radicales por orden alfabético, seguidos de la palabra "éter". 

La mayoría de los éteres son líquidos volátiles, ligeros e inflamables, solubles en alcoholes y otros disolventes orgánicos. Desde el punto de vista químico, son compuestos inertes y estables; los álcalis o los ácidos no los atacan fácilmente. Están estrechamente relacionados con los alcoholes, y se obtienen directamente de ellos. El compuesto más típico y más utilizado de este grupo es el éter común o etílico, normalmente denominado éter.

En química orgánica y bioquímica, un éter es un grupo funcional del tipo R-O-R', en donde R y R' son grupos que contienen átomos de carbono, estando el átomo de oxígeno unido y se emplean pasos intermedios:

ROH + HOR' → ROR' + H2O

Normalmente se emplea el alcóxido, RO-, del alcohol ROH, obtenido al hacer reaccionar al alcohol con una base fuerte. El alcóxido puede reaccionar con algún compuesto R'X, en donde X es un buen grupo saliente, como por ejemplo yoduro o bromuro. R'X también se puede obtener a partir de un alcohol R'OH.

RO- + R'X → ROR' + X-

El enlace entre el átomo de oxígeno y los dos carbonos se forma a partir de los correspondientes orbitales híbridos sp³. En el átomo de oxígeno quedan dos pares de electrones no enlazantes.

Aunque los éteres no se identifican fácilmente por espectroscopia de infrarrojo, presentan absorciones características a campo bajo en la RMN de 'H, que se detectan con facilidad. 

                                   Dietil éter

El término "éter" se utiliza también para referirse solamente al éter llamado "dietiléter" (según la IUPAC en sus recomendaciones de 1993 "etoxietano"), de fórmula química CH3CH2OCH2CH3. El alquimista Raymundus Lullis lo aisló y subsecuentemente descubrió en 1275. Fue sintetizado por primera vez por Valerius Cordus en 1540. Fue utilizado por primera vez como anestésico por Crawford Williamson Long el 30 de marzo de 1842.

Nomenclatura de éteres

La IUPAC nombra los éteres como alcanos con un sustituyente alcoxi. La cadena más pequeña se considera parte del sustituyentes alcoxi y la la más grande del alcano.

Propiedades

Los éteres no pueden formar enlaces mediante puentes de hidrógeno, lo que hace que estos compuestos tengan puntos de ebullición más bajos que los alcoholes de mismo peso molecular.

                                PROPIEDADES FISICAS

Los éteres son muy poco reactivos, lo que permite utilizarlos como disolventes inertes en multitud de reacciones. Como excepción tenemos los éteres cíclicos tensionados (oxaciclopropanos) cuya reactividad es importante, ya que se abren fácilmente tanto en medios ácidos como básicos.

 PROPIEDADES QUÍMICAS

Los éteres tienen muy poca reactividad química, debido a la dificultad que presenta la ruptura del enlace C—O. Por ello, se utilizan mucho como disolventes inertes en reacciones orgánicas. En contacto con el aire sufren una lenta oxidación en la que se forman peróxidos muy inestables y poco volátiles. Estos constituyen un peligro cuando se destila un éter, pues se concentran en el residuo y pueden dar lugar a explosiones. Esto se evita guardando el éter con hilo de sodio o añadiendo una pequeña cantidad de un reductor (SO4Fe, LiAIH4) antes de la destilación.

Usos y aplicaciones de los éteres

El éter es uno de los disolventes orgánicos más importantes y se usa con frecuencia en el laboratorio como disolvente de grasas, aceites, resinas y alcaloides, entre otros compuestos. La mezcla de vapor de éter y aire es muy explosiva; además, con el tiempo el éter puede oxidarse parcialmente formando un peróxido explosivo. Por lo tanto, el éter debe almacenarse y manejarse con mucho cuidado. Se usa principalmente como disolvente, como materia prima para fabricar productos químicos y como anestésico.

  • Anestésico general.
  • Medio de arrastre para la deshidratación de alcoholes etílicos e isopropílicos.
  • Disolvente de sustancias orgánicas (aceites, grasas, resinas, nitrocelulosa, perfumes y alcaloides).  

    ACIDOS CARBOXILICOS

    Características de los ácidos carboxilicos

     

    Los ácidos carboxílicos ocupan un lugar importante dentro de la química orgánica, dado que sirven para la construcción de derivados relacionados, como ésteres y amidas. También son importantes en la síntesis orgánica de muchas otras moléculas.

     

                Algunos ejemplos importantes son el ácido cólico, uno de los principales componentes de la bilis humana, y los ácidos alifáticos de cadena larga como el ácido oleico y el ácido linoleico, precursores biológicos de grasas y otros lípidos. También se encuentran en la naturaleza muchos ácidos carboxílicos saturados simples. Por ejemplo, el ácido acético, CH3CO2H, es el principal componente orgánico del vinagre; el ácido butano hico, CH3CH2CH2CO2H, es el que da el olor a la mantequilla rancia, y el ácido hexanoico (ácido caproico), CH3(CH2)4CO2H, es la causa del inconfundible olor de las cabras y de los calcetines deportivos después de hacer ejercicios.

     

    Estructura y  Propiedades Físicas.

     

                Cuando se une un grupo hidroxilo a un grupo carbonilo se forma un nuevo grupo funcional, el grupo carboxilo, dando lugar a los ácidos carboxílicos. Este nuevo grupo suele representarse como -COOH o -CO2H. Dado que el grupo funcional ácido carboxílico esta relacionado estructuralmente con las cetonas y con los alcoholes, podría esperarse ver algunas propiedades familiares a ellos. En efecto, los ácidos carboxílicos son similares a las cetonas y a los alcoholes en algunos aspectos, aunque también tienen grandes diferencias. Como en  las cetonas, el carbono carboxílico tiene hibridación sp2, con ángulos de enlace de 120º aproximadamente. Al igual que los alcoholes, los ácidos carboxílicos están fuertemente asociados por puentes de hidrógeno entre las moléculas. Este hecho hace que los ácidos carboxílicos tengan un punto de ebullición bastante alto con respecto a los alcoholes de peso molecular comparable.

      

    Aplicaciones de  los ácidos carboxilicos

     

    Los ácidos grasos se utilizan para fabricar detergentes biodegradables, lubricantes y espesantes para pinturas. El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial. Entre los nuevos usos de los ácidos grasos se encuentran la flotación de menas y la fabricación de desinfectantes, secadores de barniz y estabilizadores de calor para las resinas de vinilo. Los ácidos grasos se utilizan también en productos plásticos, como los recubrimientos para madera y metal, y en los automóviles, desde el alojamiento del filtro de aire hasta la tapicería.

 
                      CETONAS
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc.). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).

 

Átomos involucrados

Sufijo

- ona

Prefijo

Oxo

Posición en la cadena

En cualquier lugar, excepto el final

Fórmula

CnH2nO

Nombre de la Familia

Cetona

 

La cetona más conocida es la que nosotros conocemos como Propanona o acetona.
Su fórmula es:

CH3 – CH – CH3
             O
Propiedades Físicas de las Cetonas
 

La presencia del grupo carbonilo convierte a las y cetonas en compuestos polares. Los compuestos de hasta cuatro átomos de carbono, forman puente de hidrógeno con el agua, lo cual los hace completamente solubles en agua. Igualmente son solubles en solventes orgánicos. Los compuestos carbonílicos presentan puntos de ebullición más bajos que los alcoholes de su mismo peso molecular. No hay grandes diferencias entre los puntos de ebullición de aldehídos y cetonas de igual peso molecular. Los compuestos carbonílicos de cadena corta son solubles en agua y a medida que aumenta la longitud de la cadena disminuye la solubilidad.


Propiedades Químicas de las cetonas

 Los aldehídos y cetonas se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica.

Las 10 primeras cetonas son líquidas, de olor etéreo agradable y son disolventes de otros compuestos orgánicos, se disuelven en agua y las sólidas son insolubles, tienen una gran actividad química y en general sus propiedades son parecidas a las de los aldehídos.

Usos y Aplicaciones de las Cetonas

La cetona que mayor aplicación industrial tiene es la acetona (propanona) la cual se utiliza como disolvente para lacas y resinas, aunque su mayor consumo es en la producción del plexiglás, empleándose también en la elaboración de resinas epoxi y poliuretanos.

También se usa para en el hogar para despintar las uñas pintadas de barniz.

 
 
 
 
 

 
  Hoy habia 2 visitantes (2 clics a subpáginas) ¡Aqui en esta página!  
TEXTO AL PONER EL CURSOR SOBRE TU LOGO Buscar en la Web Buscar en Google
 


MySpace Generator
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis